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Lecture 3

Hadron Form Factors

within

the Covariant Light-Front CQ Model
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# loss of rotational covariance in the light-front formalism:

- angular condition among matrix elements of I+

- form factors may depend upon the component of the current used

- impact on the estimate of the CQ size

two approaches have been proposed

q+ ≠ 0 q+ = 0

- transformation between frames at q+ ≠ 0 and q+ = 0 is interaction
  dependent

[Lev, Pace, Salmè (‘98)] [Karmanov (‘96), Melikhov & Simula (‘02)]

non-equivalence of the two approaches
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# approach at q+ ≠ 0:   q is along the spin-quantization axis

† 

ˆ n 

  

† 

special Breit frame : q+ = - q- = Q and r q ̂ = 0

† 

I m =
1
2

C m + Lmn rx -p( )[ ] ei p Sx Cn
* e- i p Sx{ }

Sx = x-component of the LF spin operator
rx(-p) = rotation around the x-axis of (-p)
L = element of the Lorentz group

- covariance and hermiticity:

  

† 

C+ = I(1)
+

r 
C ̂ =

r 
I ̂ (1)

C- = I(1)
+ to ensure gauge invariance of Im

# choice of Cm:

- one has:

† 

I+ = I(1)
+ , I m≠+ ≠ I(1)

m≠+
† 

I(1)
m = one- body approx.

† 

Q 2 = -q • q



4

# Pseudoscalar (PS) mesons:

† 

¢ P I m P = FPS Q 2( ) P + ¢ P ( )m

  

† 

P± = M PS
2 + Q 2 4 m Q 2,

r 
P ̂ = 0- Breit frame at q+ ≠ 0:

† 

FPS = e1 H1 Q 2 M PS
2( ) + e2 H 2 Q 2 M PS

2( )- from m = + :

  

† 

H1 k( ) =
1- k

1-
k
2

dx d
r 
k ̂Ú A x , k^( ) A ¢ x , k^( )

wPS k( ) wPS ¢ k ( )
4p

m x( ) m ¢ x ( ) + k^
2

m 2 x( ) + k^
2 m 2 ¢ x ( ) + k^

2

† 

¢ x = k + 1- k( ) x

k =
q+

¢ P +
=

Q 4

4M PS
4 +

Q 2

M PS
2 -

Q 2

2M PS
2

Ï 

Ì 
Ô 

Ó 
Ô 

† 

A x , k^( ) =
M 0

4x 1-x( )
1-

m1
2 - m2

2( )
2

M 0
4

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

m x( ) = m1 1-x( ) + m2 x

Ï 

Ì 

Ô 
Ô 

Ó 

Ô 
Ô 

† 

wPS k( ) = canonical w.f.

† 

H1 k( )
¢ x = 1-k( ) x

æ Æ æ æ æ H 2 k( )

# within the LF at q+ ≠ 0 the form factors depend on Q2 / M2
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# within the LF at q+ = 0 the form factors depend on Q2

  

† 

q+ = q- = 0, r q ̂ ≠
r 
0 

P+ = M PS
2 + Q 2 4 ,

r 
P ̂ = -

r q ̂ 2

Ï 
Ì 
Ô 

Ó Ô 
- standard Breit frame:

† 

FPS Q 2( ) = e1 J1 Q 2( ) + e2 J2 Q 2( )- from m = + :

  

† 

J1 Q 2( ) = dx d
r 
k ̂Ú A x , k^( ) A x , ¢ k ̂( )

wPS k( ) wPS ¢ k ( )
4p

m 2 x( )+
r 
k ̂ •

r 
¢ k ̂

m 2 x( ) + k^
2 m 2 x( ) + ¢ k ̂ 2

  

† 

¢ 
r 
k ̂ =

r 
k ̂ + 1-x( ) r q ̂

  

† 

J1 Q 2( ) ¢ 
r 
k ̂ =

r 
k ̂ -x

r q ̂
æ Æ æ æ æ æ J2 Q 2( )

  

† 

Q 2 =
r q ̂ 2

# light-front at q+ = 0
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wp(k) from
OGE model

point-like CQ’s

- since at q+ ≠ 0 f.f. depends on Q2 / M2, one has rch ~ 1 / M

this is at variance with the phenomenology of light hadrons

† 

rch
p = 0.660± 0.024 fm, rch

K = 0.58± 0.04 fm, rch
p = 0.883± 0.014 fm

† 

M K M p @ 3.5, M p M p @ 6.7

[p: rch ~ 5 fm]

[Simula (‘02)]
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Frankfurt & Strikman (‘79)
Lepage & Brodsky (‘80)
Chung et al. (‘88)
Sawicki (‘92)
Frederico & Miller (‘92)
Demchuk et al. (‘96)
De Melo et al. (‘99)
Melikhov & Simula (‘02)
Frederico et al. (‘02)
…

What is the origin of such a discrepancy ?

Feynman triangle diagram

PS Æ PS transition

spin-0 two-fermion systems

† 

I m = e j g m

j
Â
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† 

I
F
m P1, P2( ) =

i
2p( )4 d 4 p L1 p1, P1( ) L 2 p2, P2( )Ú

⋅Tr - / p + m
p2 - m 2 + ie

g 5 / p 2 + mI

p2
2 - mI

2 + ie
G m / p 1 + mI

p1
2 - mI

2 + ie
g 5Ï 

Ì 
Ó 

¸ 
˝ 
˛ 

L(p, P) = regularizing function (to be connected to a bound-state w.f.)
Gm = generic Dirac matrix

# PS Æ PS transition:

† 

G m = g m or G m = is mn qn[ ]

† 

pi + p = Pi , Pi
2 = M i

2 æ Æ æ p2 ≠ m 2 and pi
2 ≠ mI

2 i = 1,2( )Note:

† 
within Hamiltonian formalisms (instant, point and
front forms) constituents are always on-mass shell

connection with the triangle diagram is non-trivial
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† 

I
F
m P1, P2( ) =

i
2 2p( )4 dp- dp+dr p ̂ Tr / p + m( ) / P 2 - / p + mI( )G m / P 1 - / p + mI( ){ }Ú

⋅
L1 L 2

p+ P1
+ - p+( ) P2

+ - p+( )
1

p- - psp
-[ ] p- - pZ1

-[ ] p- - pZ2
-[ ]

# using light-front variables:

- three poles in p- (assume no poles in L):

  

† 

psp
- =

m 2 + p^
2

p+
-

ie
p+

pZ1
- = P1

- -
mI

2 +
r 
P 1^ -

r p ̂( )2

P1
+ - p+

+
ie

P1
+ - p+

pZ2
- = P2

- -
mI

2 +
r 
P 2^ -

r p ̂( )2

P2
+ - p+

+
ie

P2
+ - p+

spectator pole

Z-graph poles
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- consider:

† 

P1
+ > 0, P2

+ = P1
+ + q+ > P1

+

† 

0 £ p+ £ P2
+

† 

0 £ p+ £ P1
+

† 

P1
+ < p+ £ P2

+

† 

psp
-

† 

pZ1
-

† 

pZ2
-

† 

Re p-( )† 

Im p-( )

† 

psp
-

† 

pZ1
-

† 

pZ2
-

† 

Re p-( )† 

Im p-( )

† 

IF
m P1, P2( ) = Isp

m P1, P2( ) + IZ
m P1, P2( )

spectator + Z-graph contributions

pair creation
+
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† 

I
sp
m P1, P2( ) =

p

2 2p( )4 dp+

0

P1
+

Ú dr p ̂ Tr / p + m( ) / P 2 - / p + mI( )G m / P 1 - / p + mI( ){ }p-= psp
-Ú

⋅
L1 L 2

p+ P1
+ - p+( ) P2

+ - p+( )
1

psp
- - pZ1

-[ ] psp
- - pZ2

-[ ]

  

† 

I
Z
m P1, P2( ) =

-p

2 2p( )4 dp+

P1
+

P1
++q+

Ú dr p ̂ Tr / p + m( ) / P 2 - / p + mI( )G m / P 1 - / p + mI( ){ }p-= pZ2
-Ú

⋅
L1 L 2

p+ P1
+ - p+( ) P2

+ - p+( )
1

pZ2
- - psp

-[ ] pZ2
- - pZ1

-[ ]

# spectator term: spectator particle on-mass shell

# Z-graph term: active particle on-mass shell in the final state

† 

p2
2 = mI

2( )

† 

p2 = m 2( )

† 

when q+ Æ 0, then IZ
m=+ ,̂ P1, P2( ) Æ 0Note:
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- no poles in L(p, P) Æ L independent on p-

- let us introduce the null four-vector w which defines the direction normal
   to the null plane:

  

† 

w = w 0, r 
w ( ) = 1, ˆ n ( ) æ Æ æ w 2 = 0

† - define the following new on-mass-shell momenta:

† 

˜ p i = pi - w
pi

2 - mI
2

2 w • pi

˜ p = p- w
p2 - m 2

2 w • p

† 

˜ p i
2 = mI

2

˜ p 2 = m 2

w is along the “-” direction

† 

˜ p m coincides with pm for m = +, ^, while differs only for m = -

LF momenta
(on-mass-shell)

Feynman momenta
(off-mass-shell)

† 

L i = L i p, Pi ,w( )



13

# new covariant structures depending on w [Karmanov&Smirnov (‘96)]

† 

Isp
m P1, P2,w( ) = P1 + P2( )m FPS q 2( ) +

w m

w • P1
BPS q 2( )

† 

IF
m P1, P2,w( )

q+=0
æ Æ æ æ Isp

m P1, P2,w( )
† 

IF
m = IF

m P1, P2,w( )

# consider q+ = 0 :

Z-graph suppressed !

- covariant decomposition of the spectator term

- since w is along the “-” direction, FPS can be extracted using m = + or m = ^

† 

FPS q 2( ) =
1

2P1
+

Isp
+ P1, P2( )

note: only in case of the full current one must have BPS = 0
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† 

/ p 1 + mI( ) - / ̃ p 1 + mI( ) = g + pi
- - ˜ p i

-

2
- instantaneous propagation:

† 

killed in Isp
+ by g +g + = 0

# the form factors FPS(q2) coincide with the LF result at q+ = 0:

- connection with potential model w.f.’s:

† 

L i p, Pi , w( ) = L i M i0( ) =
p

2
M i0

2 - M i
2( )

M i0 1- mI
2 - m 2( )

2
M i0

4È 

Î Í 
˘ 

˚ ˙ 

M i0
2 - mI - m( )2

wi k( )

canonical w.f.

† 

˜ p + ˜ p i( )2
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# consider q+ ≠ 0: again                       provides the form factor FPS(q2)

† 

IF
+ P1, P2( )
P1 + P2( )+

But now:

† 

IF
+ P1, P2( ) = Isp

+ P1, P2( ) + IZ
+ P1, P2( ) ≠ Isp

+ P1, P2( )

† 

Isp
+ P1, P2( )
P1 + P2( )+

only                         coincides with the LF result at q+ ≠ 0

the origin of the discrepancy between the LF approaches
at q+ = 0 and q+ ≠ 0 is the pair creation process (Z-graph)

a many-body current !!!

LF formalism

q+ ≠ 0: Z-graph active Æ maximize many-body currents

q+ = 0: Z-graph suppressed Æ minimize many-body currents

† 

{
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# pair creation process is sensitive to the mass of the active particle

† 

IZ
m P1, P2( ) mI Æ•

æ Æ æ æ 0

f.f.’s calculated at q+ = 0 and q+ ≠ 0 should coincide in the heavy-quark limit

† 

w = P1 • P2 M PS
2 = 1+ Q 2 2M PS

2

w.f.’s from
OGE model

[Simula (‘02)]
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† 

limm1Æ•J1 w( ) = limm1Æ•H1 w( ) æ Æ æ x IW( ) w( ) = Isgur - Wise function

# heavy-quark symmetry of QCD [Isgur&Wise (‘89)]

† 

x IW( ) w = 1( ) = 1 in QCD

  

† 

B Æ D* ln l

[Simula (‘96)]
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spin-1 two-fermion systems

# solution of the angular condition problem at q+ = 0

- first step: introduce the amplitude tensor Tm,ab

† 

¢ P , ¢ s I m P, s = ea
* ¢ P , ¢ s ( ) T m ,ab eb P, s( )

e(P, s) = polarization four-vectors:

† 

e P, s( ) • P = 0

ea
* P, s( ) eb P, s( )

s=0,±1
Â = -gab +

PaPb

MV
2

Ï 

Ì 
Ô 

Ó 
Ô † 

  

† 

e P, s = 0( ) =
1

MV

-MV
2 + P̂ 2

P+
, P+ ,

r 
P ̂

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

e P, s = ±1( ) =
2

P+

r 
e ̂ ±1( ) •

r 
P ̂ , 0, r 

e ̂ ±1( )
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Ï 

Ì 

Ô 
Ô 

Ó 

Ô 
Ô 

  

† 

r 
e ̂ ±1( ) = m

1
2

1,± i( )

properties:
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- second step: take into account the orientation of the null plane (w):

† 

T m ,ab = J m ,ab + Bm ,ab w( )

† 

J m ,ab = - P + ¢ P ( )m F1 Q 2( ) gab -
PaP b

MV
2 -

¢ P a ¢ P b

MV
2 +

¢ P aP b

MV
2

P • ¢ P 
MV

2

È 

Î 
Í 

˘ 

˚ 
˙ +

F2 Q 2( )
2MV

2 qa -
¢ P • q

MV
2 ¢ P a

Ê 

Ë 
Á 

ˆ 

¯ 
˜ q b -

¢ P • q
MV

2 P b
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Ï 

Ì 
Ô 

Ó Ô 

¸ 

˝ 
Ô 

˛ Ô 

+F3 Q 2( ) gma -
¢ P m ¢ P a

MV
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ q b -

P • q
MV

2 P b
Ê 

Ë 
Á 

ˆ 

¯ 
˜ - gmb -

P m P b

MV
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ qa -

¢ P • q
MV

2 ¢ P a
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 

- P + ¢ P ( )m H1 Q 2( ) ¢ P aP b

MV
2 +

H 2 Q 2( )
2MV

2 qaP b - q b ¢ P a( )
Ï 

Ì 
Ô 

Ó Ô 

¸ 

˝ 
Ô 

˛ Ô 
+ H 3 Q 2( ) gmaP b + gmb Pa[ ]

+H 4 Q 2( ) q m qaP b + q b ¢ P a

MV
2

- w-independent structures: seven form factors

- the form factors Hj (j=1, .., 4) describe the loss of transversity with respect to external
   momenta and do not contribute to the matrix element of the current† 

ea
* ¢ P , ¢ s ( ) J m ,ab eb P, s( ) Æ - P + ¢ P ( )m F1 Q 2( ) e* ¢ P , ¢ s ( ) • e P, s( ) + F2 Q 2( ) e* ¢ P , ¢ s ( ) • q e P, s( ) • q 2MV

2[ ]
+ F3 Q 2( ) e*m ¢ P , ¢ s ( ) e P, s( ) • q - em P, s( ) e* ¢ P , ¢ s ( ) • q[ ]
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† 

Bm ,ab w( ) =
1

w ⋅ P( )
w m B1 Q 2( )gab + B2 Q 2( ) qaq b

M 2 + B3 Q 2( ) w aw b

w ⋅ P( )2

È 

Î 
Í 
Í 

+B4 Q 2( ) qaw b - q bw a

w ⋅ P( )

˘ 

˚ 
˙ + P + ¢ P ( )m B5 Q 2( ) w aw b

w ⋅ P( )2

È 

Î 
Í 
Í 

+B6 Q 2( ) qaw b - q bw a

w ⋅ P( )

˘ 

˚ 
˙ + B7 Q 2( ) gmaw b + gmbw a

w ⋅ P( )
+ B8 Q 2( ) q m qaw b + q bw a

w ⋅ P( )

- w-dependent structures: eight spurious form factors

- (B5+ B7) describes the violation of the angular condition:

† 

D Q 2( ) = 1+ 2h( ) I
11
+ Q 2( ) + I

1-1
+ Q 2( ) - 8h I

10
+ Q 2( ) - I

00
+ Q 2( ) = -B5 Q 2( ) - B7 Q 2( )

- B8 describes the possible loss of gauge invariance of the given approximation
   of the e.m. current operator
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- Third step: choose the components with all the indexes different from “-”

† 

Bm ,ab = 0 if m,a, b ≠ - æ Æ æ no spurious terms

[Melikhov&Simula (‘02)]# explicit solution in the standard Breit frame where

  

† 

q = q- , q+ , qx , qy( ) = 0, 0,Q, 0( ) and
r 
P ̂ + ¢ 

r 
P ̂ = 0

† 

F1 Q 2( ) =
J+,yy

2P+

F2 Q 2( ) =
1

2h
J+,yy - J+,xx

2P+
+

1
2 1+h( )

J+,++

2P+
-

1
h 1+h( )

J+,x+

2P+

F3 Q 2( ) =
J y ,xy

Q
-

1+h
h

J y ,+y

Q

Ï 

Ì 

Ô 
Ô 
Ô Ô 

Ó 

Ô 
Ô 
Ô 
Ô 

# unique solution, no ambiguity in the extraction of form factors
# use of m = + and m = y [transverse to      in the transverse plane (x,y)]

† 

ea
* ¢ P , ¢ s ( ) T m ,ab eb P, s( )# note that may involve indexes a and b equal to “-”

spurious terms present in the matrix elements of the e.m. current

  

† 

r q ̂
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GKFFS

BH CCKP
covariant LF

Note: GK prescription close to the covariant result

r-meson w.f. from OGE model
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# again comparison between q+ = 0 and q+ ≠ 0:

w.f. from OGE model

# Z-graph relevant for all r-meson form factors [Mr = 0.77 GeV]
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† 

J m = F1 Q 2( ) g m + q m M * - M
Q 2

È 

Î 
Í 

˘ 

˚ 
˙ + F2 Q 2( )

is mr qr

M * + M

# N - N* transition: LF at q+ = 0

† 

J P =
1
2

+

, T =
1
2

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

† 

p* ¢ n I m pn = I m ¢ n n( ) = u p* ¢ n ( ) J m +
Bm w( )
w • P

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

u pn( )

† 

Bm w( ) = B1 Q 2( ) / w -
2w ⋅ P

M * + M( ) 1+h( )

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

P m + q m M *2 - M 2

2Q 2

È 

Î 
Í 

˘ 

˚ 
˙ 

+ B2 Q 2( )w m + B3 Q 2( ) / w 
w ⋅ P

w m + M * - M( )B4 Q 2( ) / w 
w ⋅ P

q m

+ M * - M( ) B5 Q 2( ) is mrw r

- w-independent structures: two form factors

- w-dependent structures: five (spurious) form factors

† 

Note : qm J m = 0 and qm Bm µ M * - M

[Cardarelli&Simula (‘00), Simula (‘01)]
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† 

I+ ¢ n n( ) = 2P+ F1 Q 2( ) +
hB1 Q 2( )

1+h

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 
d ¢ n n - F2 Q 2( ) +

B1 Q 2( )
1+h

È 

Î 

Í 
Í 

˘ 

˚ 

˙ 
˙ 

iQ s y( ) ¢ n n

M * + M

Ï 

Ì 
Ô 

Ó Ô 

¸ 

˝ 
Ô 

˛ Ô 

I y ¢ n n( ) = F1 Q 2( ) + F2 Q 2( )[ ] iQ s z( ) ¢ n n + F1 Q 2( ) + F2 Q 2( ) + B5 Q 2( )[ ] i M * - M( ) s x( ) ¢ n n

# standard Breit frame:
  

† 

q = q- , q+ , qx , qy( ) = 0, 0,Q, 0( ) and
r 
P ̂ + ¢ 

r 
P ̂ =

r q ̂ M 2 - M *2

Q 2

† 

GE Q 2( ) = F1 Q 2( ) -hF2 Q 2( ) =
1
2

Tr I+

2P+

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

-
iQ

2 M * + M( )
Tr I+

2P+
s y

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

GM Q 2( ) = F1 Q 2( ) + F2 Q 2( ) = -
i

2Q
Tr I ys z{ }

# use of m = + for the charge form factor, and of m = y for the magnetic
   form factor

† 

Sachs form factors
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# effects of the loss of rotational covariance can be manifest also in systems
   with J < 1 using different components of the e.m. current

# nucleon magnetic form factors:

from Iy

† 

GM
N Q 2( ) = -

P+

Q
Tr I y is z[ ]

from I+

† 

GM
N Q 2( ) =

1
2

Tr I+ 1+
2M
Q

is y
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ 

# point-like CQ’s:

† 

I+ 0( ) = e j g +

j
Â

# nucleon w.f. from OGE model
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# point-like CQ’s:

† 

I+ 0( ) = e j g +

j
Â

† 

f1
IV IS( ) Q 2( ) =

A1
IV IS( )

1+ B1
IV IS( )Q 2

+
1- A1

IV IS( )

1+ C1
IV IS( )Q 2( )

2

f2
IV IS( ) Q 2( ) = k IV IS( ) A2

IV IS( )

1+ B2
IV IS( )Q 2( )

2 +
1- A2

IV IS( )

1+ C2
IV IS( )Q 2( )

3

Ï 

Ì 
Ô 

Ó 
Ô 

¸ 

˝ 
Ô 

˛ 
Ô 

# CQ form factors: isovector (IV=U-D) and isoscalar (IS=U+D) f.f.’s

8 parms
† 

k IV and k IS

fixed by mp and mn

proton charge radius
underestimated

CQ size ?



28

# CQ f.f. parms fixed by data below Q2 = 1 (GeV/c)2 ~ (scale of cSB)2

low Q2 [ <  1 (GeV/c)2 ] high Q2

# soft physics important at least up to Q2 ~ 10 (GeV/c)2

† 

GM
p

† 

-GM
n
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low Q2 [ <  1 (GeV/c)2 ] high Q2

† 

GE
p

† 

GE
n

# neutron charge radius
   underestimated by 50%

CQ size:

† 

rch
U = 0.43 fm

rch
D = 0.45 fm

Ï 
Ì 
Ô 

Ó Ô 

many-body currents ?
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# ratio of electric to magnetic proton f.f.’s [see update in Arrington (‘03)]

  

† 

p r e , e' r p ( )

† 

GE
GM

= -
Pt
Pl

E + ¢ E ( ) tan q 2( )
2M

† 

ds
dW

e 1+ Q 2 4M 2( )
s Mott

=
Q 2

4M 2 GM
2 +e GE

2

recoil polarization Rosenbluth separation

† 

p e, e' p( )

† 

e = long. photon pol.Pl(t) = long. (trans.) pol.

LF CQM



31

JLAB data
versus pQCD

† 

pQCD quark counting rules( ) : Q 2 F2 Q 2( ) F1 Q 2( ) Æ const.

† 

pQCD with Sudakov resum.( ) : a s
2 Q 2( ) Q 2 F2 Q 2( ) F1 Q 2( ) Æ const.

† 

relativistic CQ model : Q F2 Q 2( ) F1 Q 2( ) ~ const.

O.K.

O.K.

no ! [Brodsky et al. (‘73)]

[Ji et al. (‘03)]

[Miller (‘02)]
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# nature of the Roper resonance [P11(1440)]

- q3 assignment: radial excitation of the nucleon

same spin-flavor structure of the nucleon

- q3 G admixture [Barnes, Burkert, Carlson, Close, Li, Mukhopadhyay, …]

q3 G is orthogonal to the nucleon in the spin-flavor space

# different Q2-behavior of the form factors for q3 or q3 G configurations

† 

A1 2 Q 2( ) µ GM Q 2( )
S1 2 Q 2( ) µ GE Q 2( ) Q 2

helicity amplitudes some JLAB experiments:
91-002 (Burkert, Stoler, Taiuti)

93-036 (Chasteler, Minehart, Weller)
…
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- relativistic effects reduce the helicity amplitudes and may change their sign

- the fastest fall-off is exhibited by the hybrid q3 G model

- relativistic quark model underestimates A1/2 at the photon point (Q2 = 0)
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some JLAB experiments:
89-037 (Burkert, Minehart)                            PC
89-039 (Dytman, Giovannetti)                       PC
89-042 (Burkert, Minehart)                            PC
91-002 (Burkert, Stoler, Taiuti)                      PC

91-011 (Frullani, Kelly, Sarty)                     C
93-006 (Burkert, Ripani)                                 PC

93-036 (Chasteler, Minehart, Weller)           C
94-014 (Stoler, Napolitano)                          C
99-107 (Burkert, Minehart, Stoler, Taiuti)    C
01-002 (Frolov, Koubarowski, Stoler)          A

…

# helicity amplitudes of many transition to nucleon resonances are being
   investigated systematically at JLAB
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# the light-front formalisms at q+ = 0 is presently the most suitable approach
   for developing a relativistic CQ model

- it allows the suppression of the pair-creation process and it matches the
  Feynman triangle diagram for a subset of amplitudes from which the form
  factors can be extracted

- the angular condition is solved and a one-body approximation for the e.m.
  current can be formulated free of spurious effects due to the orientation of
  the null plane

# relativistic effects are important for the calculation of hadron e.m. form
   factors, particularly up to Q2 ~ 1 (GeV/c)2 ~ (scale of cSB)2

# nucleon and pion data for Q2 < 1 (GeV/c)2 can be reproduced using the OGE
   w.f.’s  by introducing a CQ size of  0.40 - 0.45 fm

SUMMARY


